Hybrid Methods Using Evolutionary Algorithms for On-Line Training

نویسندگان

  • G. D. Magoulas
  • V. P. Plagianakos
چکیده

A novel hybrid evolutionary approach is presented in this paper for improving the performance of neural network classifiers in slowly varying environments. For this purpose, we investigate a coupling of Differential Evolution Strategy and Stochastic Gradient Descent, using both the global search capabilities of Evolutionary Strategies and the effectiveness of on–line gradient descent. The use of Differential Evolution Strategy is related to the concept of evolution of a number of individuals from generation to generation and that of on–line gradient descent to the concept of adaptation to the environment by learning. The hybrid algorithm is tested in two real-life image processing applications. Experimental results suggest that the hybrid strategy is capable to train on–line effectively leading to networks with increased generalization capability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors

Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Novel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem

Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...

متن کامل

Tumor detection in colonoscopic images using hybrid methods for on-line neural network training

In this paper the effectiveness of a new Hybrid Evolutionary Algorithm in on-line Neural Network training for tumor detection is investigated. To this end, a Lamarck-inspired combination of Evolutionary Algorithms and Stochastic Gradient Descent is proposed. The Evolutionary Algorithm works on the termination point of the Stochastic Gradient Descent. Thus, the method consists in a Stochastic Gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001